

TRENTO, 18 aprile 2013

Comportamento sismico degli edifici in legno

Prof. Maurizio Piazza

Dipartimento di Ingegneria Civile, Ambientale e Meccanica

Ministero delle Infrastrutturo e dei Trasporti Consiglio Superiore dei Lavori Pubblici

UNI EN 1995-1-1:2005

Eurocodice 5: Progettazione delle strutture di legno Parte 1-1:Regole generali - Regole comuni e regole per gli edifici

> APPENDICE NAZIONALE ITALIANA alia UNI EN 1995-1-1:2005

Parametri adottati a livello nazionale da utilizzare per le strutture di legno Appendice Nazionale Italiana alla EN 1995-1-1:**2004**

Approvata dal C.S.II.pp. in data 24/09/2010

In G.U. il **27/03/2013**

Aspetti positivi e negativi del legno in zona sismica

DIFETTI PREGI

Comportamento *fragile* Leggerezza

Resistenza

Rigidezza

Resistenza a carichi breve durata

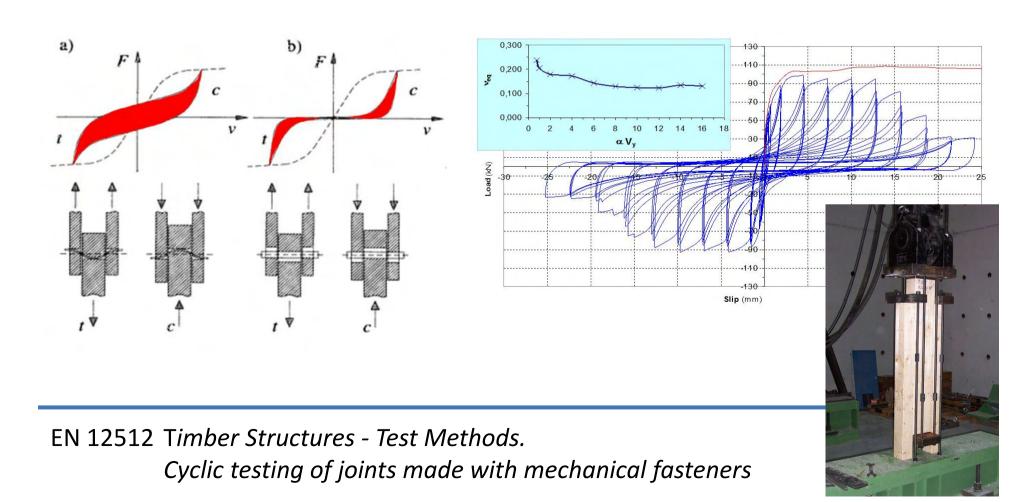
Capacità dissipativa deve essere (eventualmente) ricercata nei collegamenti

... DUTTILITÀ CONCENTRATA

Vantaggio della struttura di legno: il rapporto *Resistenza/Massa volumica* è praticamente identico a quello dell'acciaio

In realtà le "forze sismiche" non si riducono della medesima quantità, perché i carichi permanenti portati e la quota di carico variabile rimangono circa invariati.

	Peso totale sismico
Struttura telaio c.a., solai latero-cementizi, tramezze laterizio	≅ 21000 kN
Struttura di legno massiccia (pannelli)	≅ 13000 kN



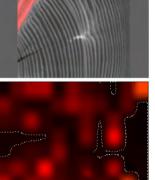
Scelta del collegamento e progetto del nodo

Attività di ricerca UNITN su strutture in legno

Gruppo di ricerca è formato da 13 persone che si occupano di ricerca e didattica sulle strutture in legno, sia nuove costruzione che esistenti.

PRESERVATION OF THE HISTORICAL HERITAGE

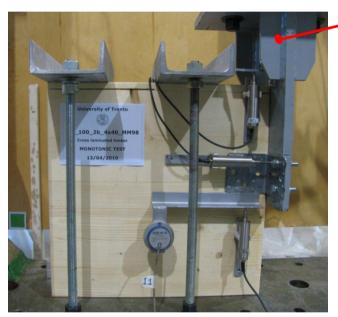
Faculty members


Marco Ballerini Maurizio Piazza Roberto Tomasi

Postdoctoral researchers and PhD Students

Ermanno Acler
Mauro Andreolli
Daniele Casagrande
Ivan Giongo
Paolo Grossi
Cristiano Loss
Andrea Polastri
Simone Rossi
Mariapaola Riggio
Tiziano Sartori

NEW ENGINEERED WOOD MATERIALS



SET - UP DI PROVA

ANGOLARI A TAGLIO

Piastra di connessione tra martinetto ed elemento (nastro di fondazione)

HOLD - DOWN

PANNELLO

Pannello Xlam n.strati = 3 spessore = 32+34+32 (98) dimensioni = 50x50 cm 50x70 cm

CONNETTORI

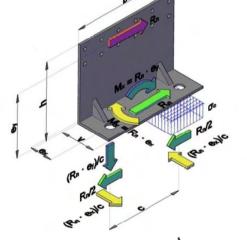
- chiodi Anker 4.0x40
- chiodi Anker 4.0x60

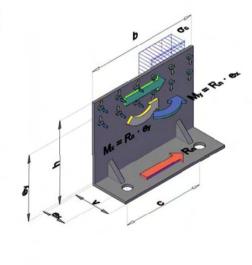
ANCORANTI

bulloni con rondella

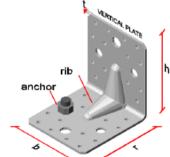
Pannello Xlam con intagli laterali necessari per l'ancoraggio con la testa del martinetto MTS

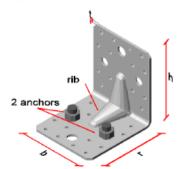
COLLEGAMENTO PARETE-FONDAZIONE

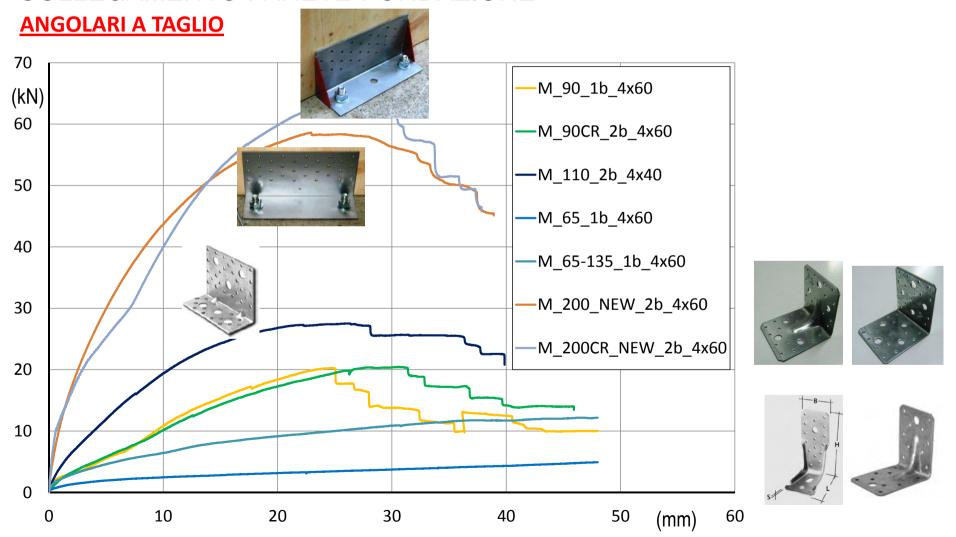

ANGOLARI A TAGLIO


Le connessioni con singolo ancorante presentano collasso non previsto, per estrazione dei connettori o cedimento del primo strato del pannello in corrispondenza del piano di

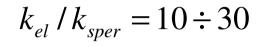
incollaggio

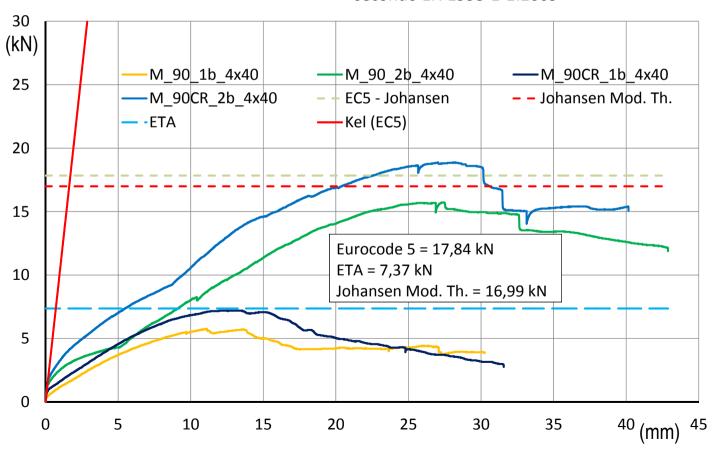


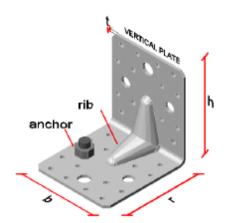


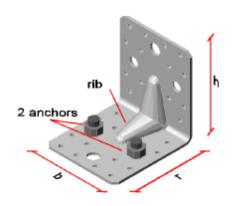


COLLEGAMENTO PARETE-FONDAZIONE

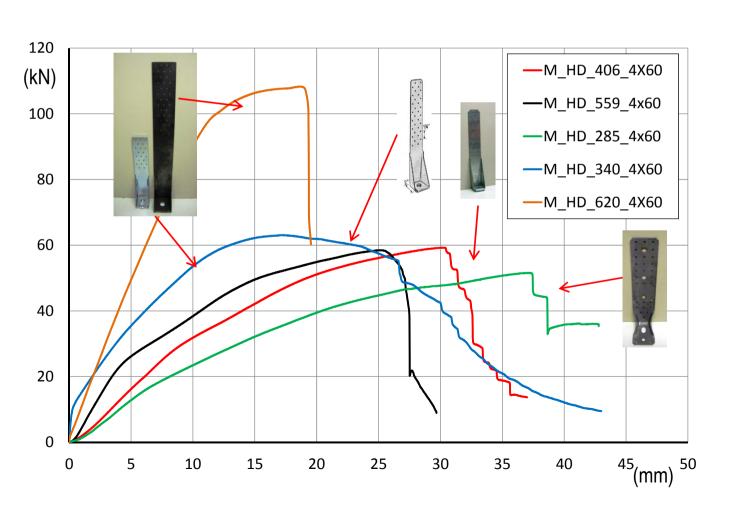



COLLEGAMENTO PARETE-FONDAZIONE


ANGOLARI A TAGLIO


$$k_{\rm el} = {\rm n_{chiodi}} \cdot k_{\rm ser,conn}$$

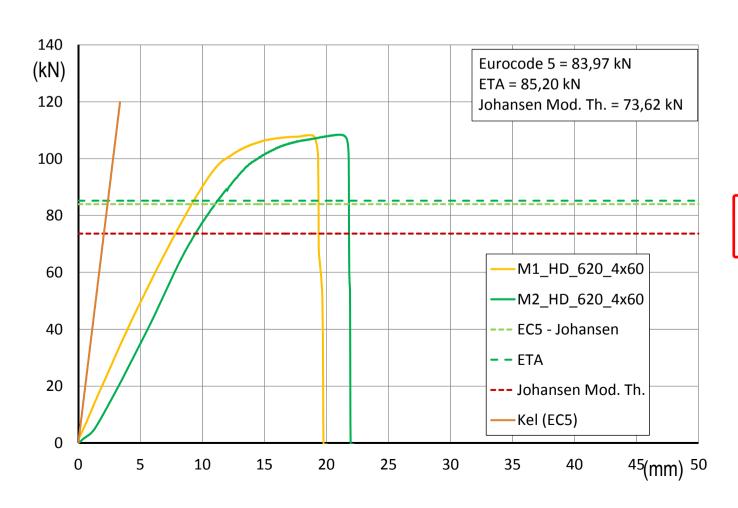
secondo EN 1995-1-1:2009



COLLEGAMENTO PARETE-FONDAZIONE

HOLD-DOWN A TRAZIONE

Modalità di rottura



COLLEGAMENTO PARETE-FONDAZIONE

HOLD-DOWN A TRAZIONE

<u>Modalità di rottura</u>

$$k_{\rm el} = {\rm n_{chiodi} \cdot k_{ser,conn}}$$

secondo EN 1995-1-1:2009

$$k_{el} / k_{sper} = 2 \div 5$$

SET – UP DI PROVA

Telaio di contrasto in legno per prove su pareti

PROGETTO DI RICERCA CHI-QUADRATO

Prove sulle connessioni

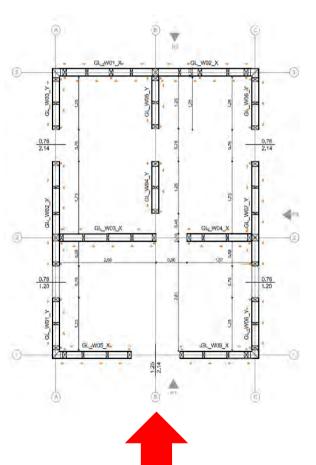
Connessione telaio – pannelli Ancoraggi alla fondazione

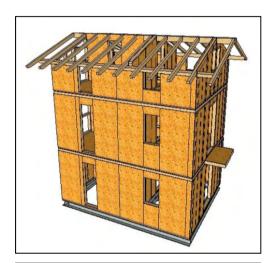
 Prove su tavola vibrante per un edificio a tre piani

PROGETTO DI RICERCA CHI-QUADRATO

FASE 3: PROVA SU TAVOLA VIBRANTE IN SCALA REALE DI UN EDIFICIO A 3 PIANI

OBIETTIVI

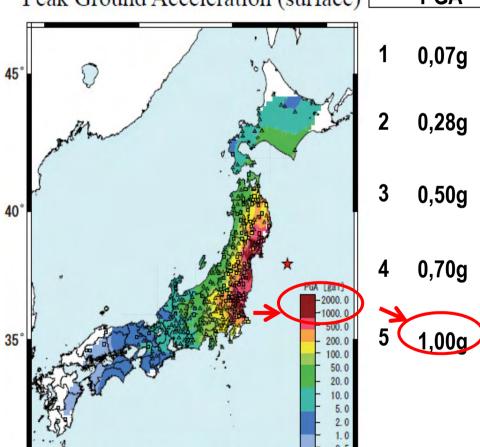

- VALIDARE GLI ATTUALI MODELLI DI CALCOLO PRESENTI NELLE NORMATIVE VIGENTI
- STUDIARE L'INTERAZIONE DELLE COMPONENTI STRUTTURALI ALL'INTERNO DI UN EDIFICIO REALE



PROVA SU TAVOLA VIBRANTE IN SCALA REALE DI UN EDIFICIO A 3 PIANI

EDIFICIO DI PROVA

- Pianta rettangolare 5 m x 7m
- Altezza del colmo: 7.65 m
- Simmetria longitudinale
- 8 pareti in direzione parallela all'input sismico. L_{tot} = 12.5 m
- Elementi di solaio a sezione scatolare (h=140 mm) irrigiditi mediante pannelli OSB di spessore 15 mm
- Pareti intelaiate con pannelli di rivestimento in OSB (15 mm) chiodato su 2 lati mediante chiodi ring 2.8 x 60

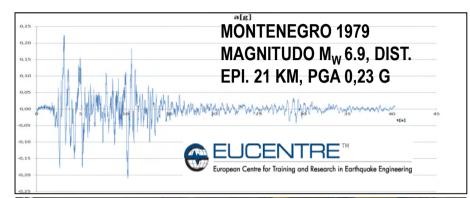


2011/3/11 14:46,

M9.0 (JMA)

Peak Ground Acceleration (surface) PGA

* Epicenter (JMA)


145°

140°

☐ KiK-net

135°

130°

Seismic Engineering Research Infrastructures for European Synergies

Seismic performance of multi-storey timber buildings

Universidade do Minho

PIAZZA M., TOMASI R.

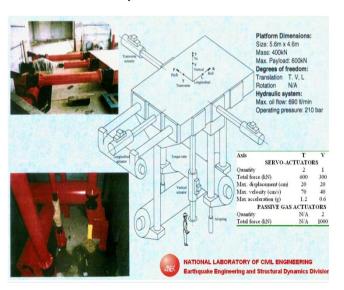
USER TEAM

UNIVERSITY OF TRENTO PIAZZA-TOMASI

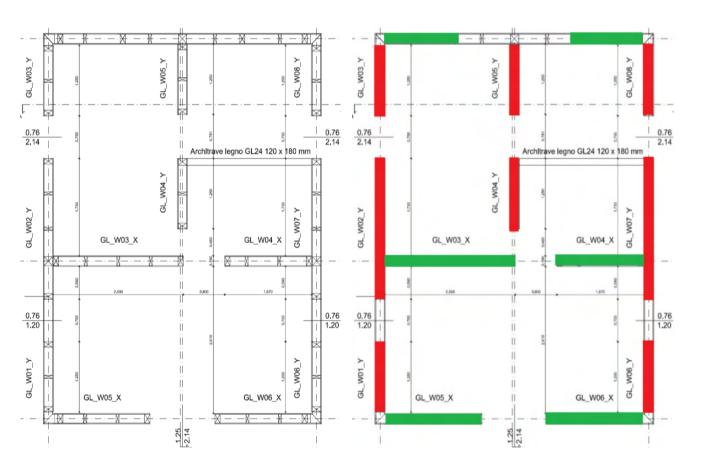
CLT

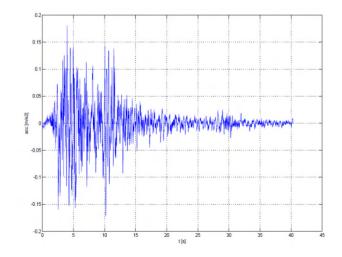
UNIVERSITY OF MINHO

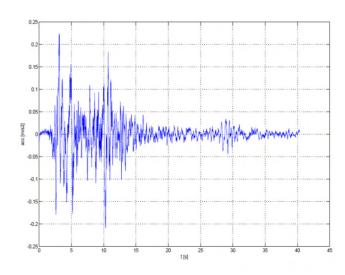
LOURENCO - BRANCO



NATIONAL CIVIL ENGINEERING LABORATORY, LISBON

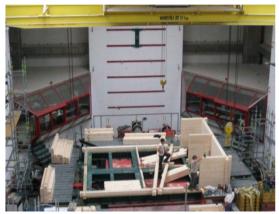






Montenegro (1979)- stazione Ulcinj Hotel Albatros

Seismic test level	L (Longitudinal) Shake Table direction		T (Longitudi Shake Table dir		Motion
1	Montenegro X	-	Montenegro Y	0.07g	2D
2	Montenegro X	-	Montenegro Y	0.15g	2D
3	Montenegro X	-	Montenegro Y	0.28g	2D
4	Montenegro X		Montenegro Y	0.50g	2D



Assembly phase and completed specimens for

- a) loghouse specimen,
- b) platform frame system with OSB panels,
- c) platform frame system with gypsum fiber panels

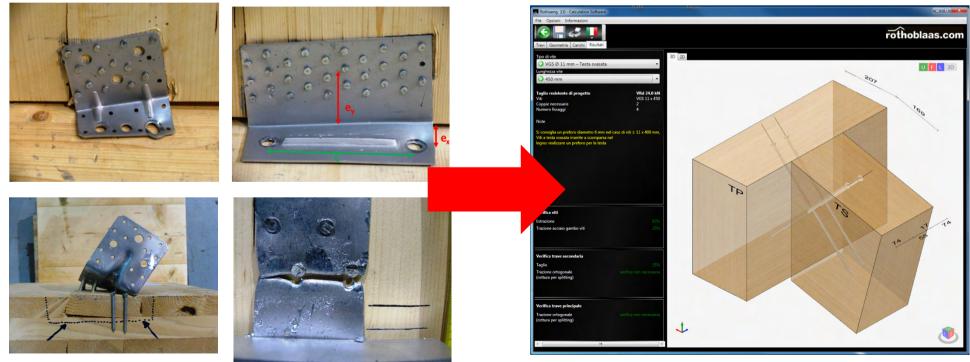
http://www.youtube.com/user/TimberResearchTrento

Rivestimento strutturale OSB Rivestimento non strutturale Rivestimento strutturale fibrogesso

Febbraio 2013

Assembly phase and completed specimens for

- a) loghouse specimen,
- b) platform frame system with OSB panels,
- c) platform frame system with gypsum fiber panels
- d) **CLT system**



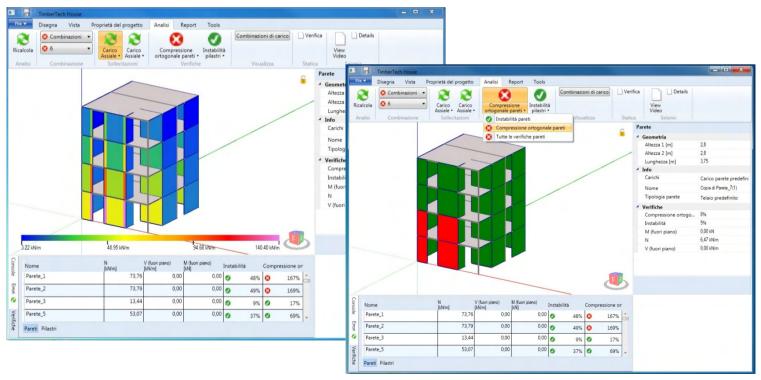
TIMBERTECH.IT dalla ricerca alla pratica

Start-up nata dal gruppo di ricerca sulle strutture in legno dell'Università di Trento

Ricerca sui sistemi di connessione (resistenza, rigidezza, duttilità)

Software di calcolo

www.timbertech.it


TIMBERTECH.IT dalla ricerca alla pratica

Software di calcolo per case in legno

Verifica connessioni (hold down, squadrette, viti, chiodi)

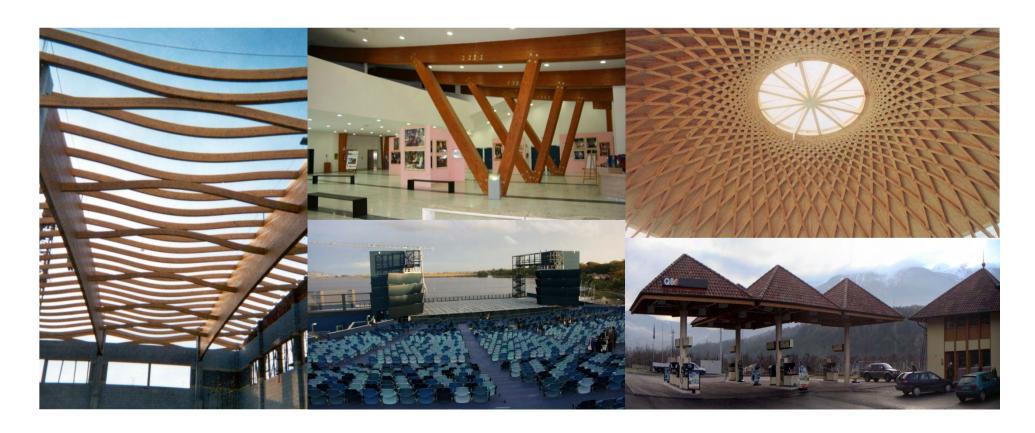
Verifica pareti (XLAM, pareti a telaio)

Modellazione considerando rigidezza di pareti e collegamenti

Corso di Laurea Magistrale in Ingegneria Civile

Classe delle lauree magistrali in Ingegneria Civile LM-23

4 opzioni formative specifiche Università di Trento


- strutture
- riabilitazione
- infrastrutture e geotecnica
- progettazione integrata degli edifici

1. Opzione formativa strutture

Progettazione, analisi, realizzazione e controllo delle strutture in ambito civile e industriale, con riferimento a materiali tradizionali (calcestruzzo, acciaio, legno) o avanzati, con particolare attenzione alle azioni eccezionali (fuoco, sisma ecc.)

2. Opzione formativa *riabilitazione*

Riabilitazione delle strutture civili ed industriali, anche con riferimento agli edifici di interesse storico o monumentale

3. Opzione formativa infrastrutture e geotecnica

Progettazione, manutenzione, controllo e ripristino di opere infrastrutturali, quali strade, ponti e opere idrauliche, di opere di fondazione superficiali e profonde

4. Opzione formativa progettazione integrata

Progettazione integrata dell'edificio, con particolare riguardo agli aspetti connessi al risparmio energetico, alla realizzazione e manutenzione degli impianti tecnici (termici, elettrici, meccanici) in ambito civile

Registration to the SHATIS13 conference is now open.

The online registration form

Welcome

Following the first edition held in Lisbon, the 2nd International Conference on Structural Health Assessment of Timber Structures (SHATIS'13) will be held from the 4th to the 6th of September 2013 in Trento, Italy.

SHATIS'13 will be held jointly by the Trento University Department of Civil, Environmental and Mechanical Engineering and the Trees and Timber Institute of the National Research Council, and co-organized by COST ACTION FP 1101 "Assessment, Reinforcement and Monitoring of Timber Structures".

The Conference will provide a forum for researchers and professionals to exchange experiences and discuss subjects related to the appraisal, control and conservation of timber structures. The aim will be to determine the current state of the art in the field and to foster ideas on future research and new developments.

Technical visits will be organized with the contribution of the "Soprintendenza per i beni architettonici" of the Provincia autonoma di Trento.

You are cordially invited!

Maurizio Piazza Chair of the Scientific Committee

Mariapaola Riggio Chair of the Organizing Committee

http://events.unitn.it/en/shatis13

DOWNLOAD

is available from the following link

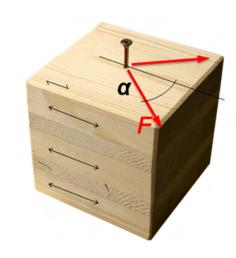
- Accommodation
- Committees (116 KB)
- How to reach us (603 KB)
- Venues (421 KB)
- Information for authors ! (134
- Authors' template (50 κΒ)
- Abstracts' provenience (605
- Registration fees 🕒 (118 кв)

Registration

INFORMATION

Organizing Secretariat
Events, Magazines and Internal
Communication Office
University of Trento
tel. + 39 0461 283228-3216
fax +39 0461 282899
convegni@unitn.it

Scientific Secretariat shatis13.secretariat@inq.unitn.it


APPROFONDIMENTI -XLAM-COLLEGAMENTI

Blaas, H.J., Bejtka, I.; Uibel, Th., *Tragfähigkeit von Verbindungen mit selbstbohrenden Holzschrauben mit Vollgewinde, Karlsruher Berichte zum Ingenieurholzbau*, Band 4, Lehrstuhl für Ingenieurholzbau und Baukonstruktionen (Hrsg.), Universität Karlsruhe, Karlsruhe, 2006

Pirnbacher, G., Traetta, G., Schickhofer, G., Forschung an der TU Graz – Anwendung der Johansen-Theorie für gekreuzt geschichtete Strukturen, In: 5. Grazer Holzbau Fachtagung- Tagungsband, ISBN: 3-90-2020-32-6, Graz, 2006

Tomasi R., Seismic behavior of connection for building in CLT, European Conference on Cross Laminated Timber (CLT) in the frame of COST ACTION FP1004, Graz, 2013

http://timberresearchtrento.blogspot.com/ http://www.unitn.it/en/dims/16845/timber-structures

APPROFONDIMENTI - Progetti di ricerca UNITN

Sartori T., Piazza M., Tomasi R., Grossi P., Characterization of the mechanical behavior of light-frame timber shear walls through full-scale tests, World Conference on Timber Engineering, Auckland 2012

Piazza M., Tomasi R., Investigation of seismic performance of multi-storey timber buildings within the framework of the SERIES Project, ICSA 2013, International Conference on Structure and Architecture, Guimaraes, Portugal, 2013

http://www.unitn.it/en/dims/16845/timber-structures

http://www.timbertrento.com/

http://www.youtube.com/user/TimberResearchTrento

RISORSE www

http://www.promolegno.com

http://www.dataholz.com/

http://www.timbertech.it/

http://www.timbertrento.com/

